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Configurational properties of polymers in a good solvent 
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Department of Physics, Bar-Ilan University, Ramat-Can, Israel 

Received 2 October 1975, in final form 15 April 1976 

Abstract. Self-interacting, self-avoiding polymer chains and rings are generated on the FCC 
lattice by exact enumeration. The effect of the ‘good’ solvent is represented by a short-range 
repulsive interaction between pairs of polymer units. The partition function and the 
moments of the end-to-end distance and mass distributions are extrapolated to obtain the 
limiting behaviour at various temperatures. Difficulties encountered in determining the 
exponents and their temperature dependence are discussed. 

1. Introduction 

The self-avoiding walk, or chain, on a lattice has been extensively studied as a model of 
a single polymer chain in dilute solution. The model has turned out to be insoluble by 
analytic means, but exact enumeration and Monte Carlo studies have provided what is 
generally regarded as a reliable picture of the configurational properties (Domb 1969). 
The self-avoiding condition, according to which a lattice site cannot be occupied by 
more than a single chain unit, is used to simulate the excluded volume of the individual 
units. Any additional interactions apart from this hard core are omitted from the model. 

The neglected interactions fall into two groups: (i) forces between neighbouring 
units (e.g., bond torsion), and (ii) the interaction between non-neighbouring units 
whose strength depends on their spatial separation but not on the distance between 
them as measured along the chain backbone. Forces belonging to type (i) have been 
explored in detail, but only in the absence of excluded volume in order to facilitate 
analytic treatment (Flory 1969). The justification for neglecting excluded volume in 
these studies is that the polymer is assumed to be at its @-temperature where the 
excluded volume effect is approximately cancelled by the (in this case) attractive force 
of type (ii). 

Looked at from a statistical mechanical standpoint type (ii) forces are the more 
interesting of the two; because they are non-Markovian they are capable of producing a 
qualitative change in behaviour, similar in nature to the change produced in the random 
walk when excluded volume is introduced. Type (i) forces, on the other hand, do not 
destroy the Markovian structure and the exponents governing asymptotic behaviour 
remain unchanged; the same is true if, for example, immediate reversals are prohibited 
in the random walk. Only the type (ii) force is discussed here. 

Contributions to the type (ii) interaction between pairs of units arise from polymer- 
polymer, polymer-solvent and solvent-solvent forces. Depending on the relative 
strengths of the three components, the resultant interaction may be of either sign. If 
negative, polymer-solvent contacts are favoured, then the typical chain configuration 
will be more open than if only excluded volume is present-the chain is in a ‘good’ 
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solvent. A particular case of the good solvent is the athermal solution; the effective 
interaction is zero and the usual self-avoiding picture applies. If the effective force is 
positive the chain tends to contract and the solvent is said to be ‘poor’. A chain in a poor 
solvent should undergo a phase transition and collapse into an ordered state at 
sufficiently low temperature. Similar behaviour may be expected from ring polymers. 

In this paper we study the properties of isolated chain and ring polymers in a good 
solvent; the poor solvent behaviour is reserved for a subsequent article. The models 
used are the self-avoiding chain and the ring embedded in a lattice, with interactions 
occurring between non-neighbouring units when they appear on adjacent lattice sites. 
Exact enumeration methods are used to exhaustively generate the possible configura- 
tions of relatively small systems (0 2) and the results are extrapolated to produce 
estimates of the asymptotic forms of the configurational properties (0 3). The relation 
between the inadequate convergence of some of the numerical results and the perturba- 
tion expansion approach to the problem is discussed in D 4. Frequent reference is made 
to the results obtained in a study of the non-interacting case (Rapaport 1975 to be 
referred to as I). 

2. Chain and ring generation 

Consider a self-avoiding chain of n + 1 units located on the sites of a regular lattice and 
joined together by n links. Adjacent units along the chain are located on neighbouring 
sites. Between each pair of non-adjacent units which, in a particular embedding, lie on 
neighbouring lattice sites, there is an interaction of constant strength -J. The chain 
partition function at a temperature T has the form 

where q = exp 8, 8 = J/k,T, and c,, is the number of (n, m) embeddings, i.e., the 
number of n-link chains having m nearest-neighbour pairs of units. c,(q) is a finite 
polynomial in q whose degree depends both on the value of n and the lattice type. In 
the non-interacting or high temperature limit (q = l), c,(l) becomes c,, the number of 
n-step self-avoiding walks. The other limiting case is q = 0 ( T  = 0), which corresponds 
to double excluded volume-no nearest-neighbour pairs. 

The partition function of an n-link ring can also be written in the form (2.1). For 
q = 1 it reduces to u,-the number of returns to the origin of the n-step self-avoiding 
walk (self-avoiding except for the endpoints). Subscripts will be used to distinguish 
between the chain and ring quantities where necessary. 

The moments of the chain end-to end distance distribution are defined as 

where c,, ( r )  is the number of (n, m) configurations whose endpoint separation is r (the 
links are taken to have unit length). Similarly, the moments of the distribution of 
distances from the centre of mass of the polymer are 

for both chains and rings, with c,,(s) the number of (n,  m) configurations whose units 
are a mean square distance s2 from the centre of mass. 
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The exact enumeration procedure for an n-link polymer involves the computer 
evaluation of the coefficients c,, ( r )  and/or c,, (s) for all allowed values of m, r and s. 
The partition function coefficients follow from 

r S 

The computational techniques were outlined in I, and amount to a full evaluation of the 
possible configurations, using lattice symmetry and careful programming to reduce the 
computation time to a minimum. The output of the calculation consists of the partition 
function expressed in polynomial form (2.1) and the R or S moments as ratios of two 
such polynomials (2.2,2.3). Lists of the coefficients required to construct the partition 
function and p = 2 moments as functions of r )  appear in the appendix. 

Only the face-centred cubic (FCC) lattice is considered in this work; extensive 
studies, both exact and Monte Carlo, of the non-interacting case on other three- 
dimensional lattices (Domb 1969) indicate that many of the limiting properties are 
lattice independent, but that larger systems must be studied to obtain results of 
comparable quality to the FCC. It would seem reasonable to presume that the same will 
prove true for the interacting case. 

For non-interacting FCC chains and rings, c, (1) is known to n = 12 and 14 respec- 
tively (Martin et a1 1967, Sykes et a1 1972b), and the chain moments RP,(l) to n = 10 
(McKenzie 1973). In order to extend the calculations this far, special techniques, 
‘counting theorems’, have been developed to keep computational effort at a tolerable 
level; these techniques are not readily applied when r )  # 1 and the highest n values 
attained are consequently smaller. For S:( 1) no special methods exist and, prior to the 
present study, direct enumeration had produced values of Sf,,,( 1) as far as n = 7 (Domb 
and Hioe 1969). In the present work the partition function and moments have been 
generated to n = 9 and 12 for chains and rings respectively. The moments SE(1) for 
non-interacting chains and rings were discussed in detail in I. 

3. Analysis of results 

A number of methods are available for extrapolating the small-n results to obtain the 
limiting behaviour of large systems (Hunter and Baker 1973); the choice of how 
sophisticated a method can be used is determined by the amount of data avilable. In 
studies of systems such as the two-dimensional king model, closed form results exist 
which can be used to corroborate the predictions of the numerical analysis. Backed up 
by these successes one proceeds with greater confidence to study similar systems for 
which no analytic results are available. Comparison of exact and extrapolated results 
also reveals some of the shortcomings of the numerical method (see 9 4). 

3.1. Partition function 

The numerical analysis of chains and rings with r )  = 1 yields 

U ,  - u0pnn-7/4 (3.1) c, -cOpnn 1/6 

in three dimensions (co and uo are constants), and for the Fcclattice p = 10.035 (Domb 
1969, Sykes et a1 1972a). These results are in accord with one of the few available 
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rigorous results, namely that 

cn I.L “f ( n ) U, - p.”g(n). (3.2) 

Bounds have been established for the unspecified functions f(n) and g(n)-they offer 
no aid to the nunierical extrapolator, and the same value of p applies both to chains and 
rings (Hammersley 1964, discussion of paper by Domb), The analysis was carried out 
for the simple cubic lattice only, but (3.2) should also apply to the FCC and other regular 
lattices. Clearly the asymptotic forms (3.1) represent only the dominant terms in an 
infinite series of descending powers of n (possibly including logarithmic terms, etc), but 
the available data are insufficient to determine the higher order contributions. 

The obvious generalization of (3.1) to the interacting chain or ring is 

cn (7) q s l .  (3.3) 

No rigorous results have been established for q # 1, and the suitability, or otherwise, of 
(3.3) must be determined by the numerical studies alone. Before we turn to a discussion 
of the numerical analysis, a brief word about the expected q-dependence of the 
exponent a is in order. If one accepts the universality hypothesis (Griffiths 1970, 
Kadanoff 1971) and its obvious extension to polymers, namely that the exponents 
governing the large-n behaviour (which are the analogues of critical indices in spin 
systems) should depend on gross features such as symmetry and dimensionality, but not 
on details such as temperature, then a should be independent of q for q s 1.  It remains 
to be seen whether the numerical results support this claim. 

According to (3.3), the ratios of successive c , ( q )  should have the form 

If the higher order terms in (3.4) are relatively small, linear extrapolation of the ratios 
against l /n  should yield a sequence of converging estimates for ~ ( 7 ) .  In figure 1 chain 
and ring ratios are plotted against l /n  for various q and, where the plots are sufficiently 
smooth, the line between the last pair of points has been continued to l / n  = 0. Higher 
order extrapolation is also possible; for this (3.4) is modified to include further powers 
of l /n :  

Sets of k + 1 successive ratios (using the coefficients Cn-k-1, . . . c,) are used to derive 
estimates of p(7 )  for given k and various n. The results of the polynomial fit are given 
in tables 1 and 2; this form of presentation is known as the Neville table. The k = 0 
column contains the ratios themselves, and the k = 1 values are the linear extrapolants 
of figure 1.  

In figure 1 the chain p(q) estimates are well converged over the entire range of q, 
but the ring values appear overestimated by the linear extrapolation for q < 1. These 
observations are confirmed by the Neville tables. Thus, although the graph suggests a 
5% difference between pCh(q) and pri(q) for q = 0.4 and 0.8, the higher order analysis 
points to values much closer together. For q = 0 rings, simple extrapolation is not 
possible because of the oscillations, but the general trend is towards the corresponding 
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Figure 1. Estimation of p ( 7 )  from the partition function for various 7). The linear 
extrapolation is a continuation of the line joining the final pair of points in each case. 

Table 1. Neville table estimates of p ( q )  for chains. 

7) = O  
7 
8 
9 

7 
8 
9 

7 
8 
9 

7 
8 
9 

7 
8 
9 

7) = 0.4 

7=0.6 

I) = 0.8 

T)=1.0 

6.606 
6.590 
6.577 

7.606 
7.584 
7.566 

8.271 
8.244 
8.222 

9.126 
9.092 
9.066 

10.276 
10.246 
10.222 

6.461 
6.481 
6466 

7.417 
7.423 
7.425 

8.043 
8.049 
8.054 

8.842 
8,854 
8.862 

10.031 
10.032 
10.032 

6.323 
6.544 
6.414 

7.404 
7444  
7.430 

8.074 
8.069 
8.069 

8.897 
8.891 
8,889 

10,054 
10.034 
10.035 

5.452 
6.912 
6.154 

7.406 
7.509 
7.403 

8.006 
8.061 
8.069 

8.845 
8.882 
8.886 

10.041 
10~000 
10.037 
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Table 2. Neville table estimates of g ( q )  for rings. Entries omitted show too much scatter. 
Compare with table 1. 

1 2 3 

q = o  
- - 10 5.508 9.337 

11 5.416 4.499 - - 
12 5.652 8.249 

10 6.022 8.363 11.38 - 
11 6.167 7.617 4.261 - 
12 6.295 7.707 8.152 - 

10 6.395 8.948 8.052 11.00 
11 6.599 8.638 7.246 5.096 
12 6.754 8.459 7.563 8.512 

10 7.030 9.322 9.170 9.163 
11 7.233 9.271 9.043 8.704 
12 7.398 9,205 8478 8.383 

10 8.264 10.103 9,813 1 1.046 
11 8.428 10.071 9.928 10.233 
12 8.563 10.054 9.971 10.101 

- - 
q = 0.4 

q ~ 0 . 6  

q =0.8 

q = 1.0 

chain value. The results can therefore be taken to support the relation 

p c h ( q )  = pri(q)? qs1 

a natural extension of the rigorous q = 1 result (3.2). 
Estimates of the exponent a(q) can in principle be derived from (3.4) once p(q)  is 

known. However, the value is very sensitive to the choice of p and a small relative error 
in p produces a relative change in a larger by an order of magnitude. Table 3 contains 
estimates of a ( q ) ;  the numbers in parentheses are the values of p(q)  which, when 
substituted into (3.4), give (Y&(q) = 1/6. The results suggest a constant exponent 
aCh(q) = 1/6 for q < 1. The ring values are more widely spread, but in view of the 
inadequate convergence of p,,(q) the results are consistent with ari(q) = - 7/4. 
Overall, the analysis suggests an q -independent exponent a, in agreement with the 

Table 3. Chain and ring exponents a(q ) .  The same ~ ( q )  estimates are used for both and 
are taken from the linear extrapolants of table 1. The &-values in parentheses give 
(r&(q) = 1/6 when substituted back into equation (3.4). 

77 CLCh(V7) a c h ( q )  ffr,(T) 

0 6.47 (6.46) 0.149 - 1.52 
0.2 6.91 (6.90) 0.155 -1.71 
0.4 7.42 (7.43) 0.177 - 1 4 2  
0.6 8.06 (8.07) 0.181 - 1.94 
0.8 8.86 (8.90) 0.209 - 1.98 
1.0 10.03 (10.04) 0.172 - 1.76 
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universality prediction. A similar conclusion for chains only was proposed by Fisher 
and Hiley (1961) based on very limited data. 

3.2. R moments 

Exact numeration and Monte Carlo treatment of three-dimensional chains leads to the 
conclusion 

Ri(1)-ron6/5. (3.6) 

(Domb 1969). Unlike the partition function, there is no rigorous confirmation of (3.6). 
The generalization to the interacting case is 

R 27) - ro(q)nY(") q s 1. (3.7) 

Here, as with the partition function, universality predicts a constant exponent. From 
(3.7) 

Equation (3.8) differs from (3.4) in that the extrapolation is now effectively against 
l / ( n  - 1) rather than l/n. This change is found to yield better results in the linear 
analysis, but because the difference is O(n-2) the higher order extrapolations are not 
significantly altered. The quality of the exponent estimates depends on how rapidly the 
moment ratio (3.8) tends to unity as n +CO; linear extrapolation of (3.8) gives limiting 
values ranging from 0.999 for q = 1 to 0.982 for q = 0. 

Estimates of y are obtained by rearranging (3.8): 

(3.9) 

The results are plotted in figure 2; the Neville table obtained by fitting xn(q) to a kth 
degree polynomial in l / n  appears in table 4. The results should be compared with 
those for q = 1 (I, McKenzie 1973). The downward curvature of the graphed ratios, 
taken together with the Neville table, provide support for the universality prediction 
Y c h ( 7 )  = 6/5 for q s 1. For the particular case q = 0, similar estimates were recently 
obtained for the tetrahedral and body-centred cubic lattices (Torrie and Whittington 
1975). 

3.3. S moments 

The limiting behaviour s i , & , (  1) -s0n6/5 is predicted by both exact enumeration (I) and 
Monte Carlo studies (McCrackin et a1 1973). Exponent estimates for q < l  are 
obtained in the same manner as before and appear in figure 3 and table 5.  The drift 
away from unity of the extrapolated moment ratios is similar to that of the R moments. 

The graphed results suggest Y c h ( 7 )  = 1.3 for q < 1. While the Neville table clearly 
shows that this is an overestimate, it also indicates that the progress towards 6/5 is very 
slow. The only Monte Carlo results available for q < 1 are on the simple cubic lattice 
(McCrackin et a1 1973) and even then only for the case q = 0; the value given is 
Ych(0)  = 1.25. 
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------- 
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Figure 2. Chain R moments: estimation of y ( 7 )  for various 7. ,yn is defined in equation 
(3.9),andasn-.co,,y.(7)-,~(7). 

Table 4. Chain R moments: estimates of ~(7). 

1 2 3 

7 = O  
6 1,396 1.251 1.287 1.545 
7 1.371 1.219 1.141 0.946 
8 1.353 1.227 1.251 1.434 

6 1.390 1.273 1.249 1.244 
7 1.371 1.258 1.218 1.178 
8 1.356 1.248 1.220 1.222 

6 1.318 1.287 1.257 1.250 
7 1,312 1.275 1.246 1.232 
8 1.306 1.266 1.238 1.224 

7 ~ 0 . 4  

7 =0.8 

The behaviour of S:,,i(l) is similar to S:,ch(l) (I), though not as well converged. For 
77 C 1 the ring exponent analysis (figure 4) is unable to predict yri(q); the Neville table is 
of no help in this case. 

3.4. Higher moments and reduced moments 

Analysis of higher chain and ring moments for 77 = 1 (I) indicates that they have the 
form (3.6) but with exponent yp = py /2  ( y  = 6 / 5 ) .  We have studied the p = 4 and 6 R 
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Figure 3. Chain S moments: estimation of y(q). 

Table 5. Chain S moments: estimates of y(q). 

c 
Y 

Q = O  
6 1.312 
7 1.315 
8 1.316 

6 1.277 
8 1.284 
8 1.289 

6 1.185 
7 1.201 
8 1,212 

q =0.4 

11~0 .8  

1.349 
1.330 
1.327 

1,336 
1,328 
1.320 

1.294 
1.293 
1.291 

1.352 1.408 
1.280 1.184 
1.318 1.381 

1,330 1.321 
1.307 1.276 
1.297 1.280 

1.303 1.297 
1.292 1.279 
1.283 1.267 

and S moments for 7 < 1 ; the convergence of the results decreases with increasingp, but 
suggests that yp(7 )  = p y ( 7 ) / 2  with the value of y ( 7 )  as obtained from the correspond- 
ing p = 2 moment. 

If the higher moments do have exponents of this form, where y (7 )  may or may not 
be a constant, then the reduced moments &f: = M:/(Mi)p’2 should approach finite 
limits as n +CO. As a typical example we give the Neville table for the reduced chain 
moment l?:(7) in table 6. The table displays a persistent upward drift as k, the order of 
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Table 6. Extrapolated estimates of the reduced moment Rt(r)). 

1 2 3 

r ) = O  
7 1.192 1,321 1.381 1.394 
8 1.211 1.343 1.410 1.459 
9 1.228 1.359 1.416 1.427 

7 1.231 1.318 1.370 1.397 
8 1.244 1.336 1.389 1.420 
9 1.256 1.351 1.402 1.430 

7 1.313 1.368 1,387 1.405 
8 1.321 1.375 1.399 1.417 
9 1.328 1.383 1.408 1.427 

r )  = 0.4 

r )  ~ 0 . 8  

extrapolation, is increased; the same is true for R;(l) (McKenzie 1973), and for the 
other reduced R and S moments. 

The explanation for the Neville table drift is the neglect of significant corrections to 
the asymptotic behaviour of the moments. One expects the typical form of the leading 
terms to be 

(3.10) M~(77)--mo(77)n6'5+m1(77)n+ . . . , 
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so that 

e(77) = m0(v) + m l(q )n - D  + O(n - 2 u ) .  (3.11) 

If U 2: 1, the technique of fitting to a polynomial in l /n  ought to yield good results. 
However, it follows from (3.10) that the correct value is U = 1/5, so it is hardly 
surprising that the Neville table fails to converge. With the limited quantity of data 
available, it does not appear possible to utilize the result (3.11) in order to improve the 
convergence. 

The 77-dependence of the moment ratios R:,,h/S:,ch and Si,ch/S;,r, has also been 
studied. The corresponding = 1 results were given in I. For the chain ratio the 
curvature of the plots against l / n  increases as 77 + 0, with a steadily increasing limiting 
value. The limit at 77 = 0 (nearest-neighbour approach forbidden) is about 7.0, well 
below the rigid linear chain value of 12. The data for the mixed ratio show poor 
convergence €or 77 < 1. 

4. Perturbation approach 

Overall, the convergence of the extrapolations proves to be best in the non-interacting 
(77 = 1 or 8 = 0) case, for each of the properties investigated. The results become 
progressively worse as 77 + 0 (8  + -CO), some properties more rapidly so than others. 
Similar variations in the quality of extrapolated results have been encountered in a 
number of other studies (e.g., the Ising model with non-magnetic impurities, Rapaport 
1972) and seem to arise whenever an additional variable (in this example the impurity 
concentration) is introduced into a system being studied by series methods. The 
variations are usually attributed to the numerical techniques seeing not the correct 
asymptotic form, but rather a modified form dominated by a set of confluent singu- 
larities which appear when the extra variable is treated by perturbation methods. This 
represents a limitation of the numerical analysis which is not readily overcome, unless 
sufficient a priori information about the structure of the expansion is made available. 

As a concrete example of this effect, consider the chain partition function cfl(8)- 
now regarded as a function of 8. We define the generating function 

For the purposes of this discussion assume that the form (3.3) with a constant exponent 
a characterizes the asymptotic behaviour; the singular part of (4.1) can be evaluated by 
taking only the dominant asymptotic contribution for each n and ignoring the early 
terms of the series which do not contribute to the singularity: 

c(e, X )  - ~ ~ ( e ) ( i  -p(e)x) - * - I .  (4.2) 

This summation is only valid in the neighbourhood of the singularity, i.e., for p(8)x 2: 1, 
but this is of course the region the numerical analysis attempts to explore. The 
singularity (4.2) and the asymptotic form of c,(8) are related through Darboux's 
theorem (Ninham 1963). 

It is reasonable to expect that p ( 8 )  can be expanded as a Taylor series about 8 = 0. 
Equation (4.2) can then be developed as a series in ascending powers of 8/(l -px ) :  

c(e ,x)-co(i-p~)-L2-1+c,e( i -px)-u-2+.  . . (4.3) 
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where p = p ( 6  = 0). Only the most strongly singular term (as gx + 1) has been retained 
in (4.3) at each order of 8. Expanding exp 6 in (4.1) and rearranging also yields an 
expansion in 6 ;  since cn(6) can be written as 

cn(@ = c gn#' 
t*O 

the generating function becomes 

with 

Gt(x) = 1 gnrx". 
n 

Matching powers of 6 between (4.3) and (4.4) yields the dominant singularity of each 
function G,(x), 

GI ( x )  - C, (1 - g ~ ) - ~ - ' - ~ ,  

or equivalently, 

(4.5) 

Numerical verification of (4.5) has been attempted. The results of a Neville table study 
of g,, appear in table 7. Note that for f = 0, gno is just c, (0). While it is apparent from the 
tables that the various estimates are all heading in the general direction of the 
self-avoiding value p = 10.035, they have not yet achieved convergence. Exponent 
estimates are consequently unobtainable, 2nd the validity of (4.5) cannot be confirmed. 

In the annealed impurity Ising model, behaviour analogous to that of (4.5) was 
predicted for the susceptibility and confirmed by numerical analysis. Series extrapola- 
tion for various impurity concentrations (the analogue of 6 )  produced the correct 
location of the shifted critical temperature (the analogue of p(6)) ,  but the exponent 
estimates were found to be incorrect by an amount which increased with concentration. 

Table 7. Neville table estimates of p using the coefficients g",. 

PO 1 2 n 

t = l  
7 12.757 8.302 11.299 
8 12.271 8.871 10.576 
9 11.929 9,195 10.330 

7 15.200 6.078 13.597 
8 14.232 7.450 11.569 
9 13.562 8.204 10.842 

7 18,104 1.895 19.587 
8 16.462 4.966 14,178 
9 15.358 6.530 12.004 

t = 2  

t = 3  
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The explanation given for these spurious results should also apply to the polymer 
analysis: the analysis effectively sees only the early terms in a series of singularities of 
form (4.3) and, though this is adequate for numerical estimation of p(f?), the more 
sensitive exponent is hidden beneath the complex structure of the series. 

From this analysis, it is apparent that a perturbation expansion approach to the 
polymer problem, namely the exact calculation (via some diagrammatic method) of 
terms up to a given order in 8, will not predict the exponent correctly. This point is 
reinforced by a further Ising model example. Consider the ferromagnetic system in a 
weak magnetic field H. The partition function is known to be non-singular and yet the 
terms of a perturbation expansion in H diverge increasingly strongly at the H = 0 
critical temperature. A full resummation of the expansion must lead to the non- 
singular behaviour (Domb and Hunter 1965), but this is not a result which could be 
deduced from just a few terms of the expansion. Additional information, in this case the 
fact that there is no singularity for H # 0, is required to complete the analysis. 

5. Summary 

We have used exact enumeration methods to study the behaviour of self-interacting 
polymer chains and rings on the FCC lattice. The emphasis has been on the asymptotic 
n -dependence, and extrapolation techniques have been used to examine the limiting 
behaviour for values of 7 corresponding to a repulsive interaction between neighbour- 
ing units. In several cases the exponent extrapolations do not converge adequately and, 
though the universality hypothesis remains consistent with the results, it cannot in 
general be established convincingly. On the basis of the discussion of § 4, the slow 
convergence of the exponent analyses is not unexpected, nor is it easily overcome. 
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Appendix. Partition functions and moment3 

The partition functions of both chains and rings have the general form (2.1). The 
coefficients c,, appear in tables A1 and A2; note that the chain coefficients have been 
divided by 12 (the lattice coordination number) and the ring coefficients by 2n (the 
symmetry number of the corresponding polygon). 

In order to list the R and S moments, we rewrite (2.2, 2.3) as 

for the R moments, etc. The coefficients M:, for the various moments are tabulated in 
tables A3-5; the values have again been divided by 12 or 2n. 
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Table Al .  Chain partition function coefficients c,, (/12). For each n the values are given 
as a sequence of pairs m : c,,,,. 

n = 3  

n = 4  
0: 47 1: 42 2: 24 3: 4 

0: 317 1: 376 2: 292 3: 144 
4: 96 

0: 2109 1: 3218 2: 2936 3: 2000 
4: 1420 5: 712 6: 296 7: 20 

0: 13983 1: 25756 2: 28488 3: 21816 
4: 17972 5: 11124 6: 6964 7: 3856 
8: 824 9: 360 

0: 92371 1: 199668 2: 253634 3: 231098 
4: 195268 5: 146516 6: 99148 7 :  65936 
8: 37108 9: 19336 10: 5132 11: 2464 

0: 608761 1: 1509368 2: 2167128 3: 2230300 
4: 2074630 5: 1678204 6: 1276332 7: 903760 
8: 593836 9: 389056 10: 221496 11: 92200 

n = 5  

n = 6  

n = 7  

n = 8 

12: 48808 13: 14208 
n = 9  

0: 4003587 1: 11197520 2: 17911722 3: 20530626 
6: 14876516 7: 11455256 4: 20584696 5: 18283276 

8: 8145780 9: 5666660 10: 3782448 11: 2332604 
12: 1321632 13: 624100 14: 318832 15: 106784 
16: 5788 

Table A2. Ring partition function coefficients c,, (/2n). 

n = 5  

n = 6  
0: 

0: 
4: 

0: 
4: 
8: 

0: 
4: 
8: 

0: 
4: 
8: 

12: 

0: 
4: 
8: 

12: 

n = 7  

n = 8  

n = 9  

n = 10 

0 

28 
288 

72 
1320 
192 

363 
5352 
4788 

1640 
19728 
46896 
4096 

8130 
170868 
275568 
99984 

1: 24 

1: 6 
5: 192 

1: 360 
5: 1464 

1: 1176 
5: 7032 
9: 1776 

1: 6072 
5: 32904 
9: 37632 

1: 32136 
5: 174480 
9: 289176 

13: 63816 

2: 72 

2: 168 
6: 16 

2: 120 
6: 1296 

2: 3102 
6: 7764 

10: 888 

2: 12840 
6: 40360 

10: 18816 

2: 68772 
6: 227304 

10: 257208 
14: 25932 

3: 72 

3: 272 

3: 960 
7: 384 

3: 1776 
7: 8052 

3: 22888 
7: 45216 

11: 12288 

3: 116178 
7: 251976 

11: 178224 
15: 1668 
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Table A2-cont inued.  

n = l l  
0: 40032 1: 170640 2: 403560 3: 664176 
4: 1000608 5 :  1305480 6: 1409424 7: 1659816 
8: 1736376 9: 1788576 10: 1837824 11: 1722024 

12: 1381272 13: 953880 14: 552672 15: 382896 
16: 126816 17: 37152 

n .= !2 
0: 207423 1: 923028 2: 2303292 3: 4173932 
4: 6102579 5 :  8366220 6: 10226534 7: 11090688 
8: 12353616 9: 12649688 10: 12559644 11: 12310452 

12: 11716380 13: 10057224 14: 7833588 15: 5126984 
16: 3530376 17: 2100552 18: 843788 19: 298176 
20: 32784 

Table A3. Chain R moment coefficients Mi,,, (/12) 

n = 3  

n = 4  
0: 247 1: 122 2: 36 3: 4 

0: 2504 1: 2020 2 :  1016 3: 324 
4: 148 

0: 22797 1: 25698 2: 17772 3: 8300 
4: 4664 5: 1592 6: 468 7: 24 

0: 194240 1: 280924 2: 246144 3: 147740 
4: 95308 5 :  45444 6: 21516 7: 9152 
8: 1504 9: 592 

0: 1581763 1: 2793796 2: 2933434 3: 2159394 
4: 1538756 5 :  918052 6: 501844 7: 269712 
8: 113292 9: 52296 10: 10996 11: 5032 

0: 12466252 1: 26006424 2: 31736596 3: 27364628 
4: 21690904 5 :  14843668 6: 9361816 7: 5577332 
8: 2938120 9: 1619768 10: 741176 11: 274840 

n = 5  

n = 6  

n = 7  

n = 8  

12: 124440 13: 31496 
n = 9  

0: 95852463 1: 230595664 2: 320068290 3: 315207014 
4: 274539364 5 :  210290280 6: 147320656 7: 97151992 
8: 58385220 9: 34681312 10: 19242276 11: 9936348 

12: 4961752 13: 2059336 14: 890480 15: 254212 
16: 12568 

Table A4. Chain S moment coefficients Mi,,, (/12), 

n = 3  

n = 4  
0: 41~2500000000 1 : 26~0000000000 2: 11~2500000000 3: 1~50000000000 

0: 395.440000000 1: 362.720000000 2: 218~560000000 3: 91~5200000000 
4: 48~9600000000 
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Table A k o n t i n u e d .  

n = 5  

n = 6  

n = 7  

n = 8  

n = 9  

0: 3481.91666666 
4: 1124.77777777 

0: 29110.2040816 
4: 19586.0408163 
8: 550330612244 

0: 234358.687500 
4: 282389.875000 
8: 33286*3750000 

0: 1834606-41975 
4: 3781837.48148 
8: 693900.246913 

12: 41527.2098765 

0: 14050622.4700 
4: 45907899.3600 
8: 12084184*9600 

12: 1405973.12000 
16: 4919~80000000 

1: 4300.94444444 
5 :  475.777777777 

1: 44876.7346938 
5 :  10545.8775510 
9: 220.408163265 

1: 434132.375000 
5: 185086*000000 
9: 15922~1250000 

1: 3969415.55555 
5: 2726828.29629 
9: 416189.728395 

13: 11286.9135802 

1: 34785317.6000 
5: 367417804000 
9: 7675615.68000 

13: 621320~200000 

2: 3228.66666666 
6: 172.666666666 

2: 41965.3061224 
6: 5807.83673469 

2: 477047.937500 
6: 111107412500 

19: 3861~00000000 

2: 5014703.20987 
6: 1848661.03703 

10: 215787.358024 

2: 49610092.4600 
6: 26988677.1600 

10: 4675112*68000 
14: 299028*800000 

3: 1816.55555555 
7: 10~0000000000 

3: 27495.4285714 
7: 2844,57142857 

3: 377350.250000 
7: 65990.1250000 

11: 1754~75000000 

3: 4549689.18518 
7: 1176974.51851 

11: 83917.9259259 

3: 50769129.9400 
7: 18785775.5200 

11: 2663760.92000 
15: 93909 *0400000 

Table A5. Ring S moment coefficients M:,,, (/2n). 

16: 121730*380165 17: 34795.6363636 

n = 5  

n = 6  
0: 

0: 
4: 

0: 
4: 
8: 

0: 
4: 
8: 

0: 
4: 
8: 

12: 

0: 
4: 
8: 

12: 

0: 
4: 
8: 

12: 

n = 7  

n = 8  

n = 9  

n = 10 

n = l l  

0~00000000000 

25.6666666666 
192.666666666 

79.8367346938 
12084 1632653 
11735 1020408 

500~062500000 
5789.62500000 
3928+37500000 

2658,37037037 
24804.4444444 
49014.5185185 
3256.88888888 

15375~1800000 
252991.920000 
349223*520000 
98673.8400000 

86808.7933884 
1695556,95867 
2513508.09917 
1656050.57851 

1: 15*3600000000 2: 45*1200000000 3: 36~4800000000 

1: 5*50000000000 2: 132.666666666 3: 212~000000000 
5: 112~000000000 6: 8~00000000000 

1: 380.081632653 2: 120~000000000 3: 896.326530612 
5: 120645714285 6: 959.020408163 7: 256.653061224 

1: 1472~25000000 2: 3726.37500000 3: 1974.37500000 
5: 7376.43750000 6: 7588.12500000 7: 7171*12500000 
9: 1333*87500000 10: 633*750000000 

1: 9291.25925925 2: 178704148148 3: 30708.7407407 
5: 40145.4814814 6: 47881.7777777 7: 50772.1481481 
9: 36367.7037037 10: 16972.4444444 11: 10434.3703703 

1: 56478*4800000 2: 114695~160000 3: 179026:260000 
5: 245298.960000 6: 307975*920000 7: 332227.200000 
9: 345570.960000 10: 287866400000 11: 186922.560000 

13: 59874~6000000 14: 22843.9200000 15: 1417~80000000 

1: 346048,264462 2: 764446.214876 3: 1197063.27272 
5: 2117606.67768 6: 2188209.91735 7: 2480695.33884 
9: 2512841.85124 10: 2468742.74380 11: 2186056.06611 

13: 1081805.35537 14: 594572.033057 15: 391357.487603 
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Table A k o n t i n u e d .  

n = 12 
0: 509164.416666 1: 2122566.58333 2: 4878293.00000 3: 8498685.75000 
4: 118477064333 5: 15445716.3333 6: 18077035.5833 7: 18823320.7500 
8: 20224779.1666 9: 20011931.9166 10: 19295537.0000 11: 18288322,1666 

12: 16615085,3333 13: 13565657.3333 14: 10039903.6666 15: 6245775.00000 
16: 4124339.50000 17: 2318518.50000 18: 882453.666666 19: 303392.333333 
20: 31418~0000000 
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